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Abstract— This paper has analyzed a method for improving scalar-multiplication in cryptographic algorithms based on Elliptic Curves 

owing to the fact that has established the superiority of the Elliptic Curve next generation cryptographic algorithms over the present day 

cryptographic algorithms. For the implementation of the method, the algorithms have been implemented and discussed with the relevant 

values such the results obtained are recorded, analyzed and compared with contemporary algorithms. More specifically, this paper carried 

out research on various aspects of elliptic curves and alternatives to reduce the cost incurred for scalar multiplication in Elliptic Curve 

Cryptography thereby making it possible to construct easy reluctant additive sequence which backtracks whenever the anomalies are 

encountered thereby making the operation of scalar multiplication operation efficient both in terms of the required operations to be 

performed and the number of bits to be recorded. Although research in questions related to elliptic curves was pursued earlier for aesthetic 

reasons, these questions have placed themselves as prominent in several applied areas such as pseudorandom number generation, 

coding theory and cryptography. 

Index Terms— Elliptic Curve Cryptography (ECC), Elliptic Curve Discrete Logarithm Problem, Elliptic Elgamal, Elliptic Curve Digital 

Signature Algorithm, Scalar Multiplication, Cryptanalysis.  

——————————   �   —————————— 

1 INTRODUCTION                                                                     

HE public key encryption scheme based on elliptic curve 
theory for the creation of smaller, faster and more efficient 
cryptographic keys through the implementation of curve 

equation therby offering an unique potential security mechan-
ism is elliptic curve cryptography which provides efficient 
usefulness in the resource constraint devices that deliver ex-
tremely low resource consumption and cryptographic coun-
termeasured offered in software. 

 
1.1 Background and Motivation 

An elliptic curve E, which is defined over a field K can be 

defined explicitly by the Weierstrass equation of the form  
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� � �. If characteristic of � is not 2 or 3 

which is char(�) ≠ 2 �� 3, then following is the form of the 

elliptic curve �, 
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One of the alternatives to this form is, 

�� + 
� = �
 + ��� + �                  (3) 

      where  
, � � �.  The discriminant of the curve is ∆ =
 −16 (4 a
 + 27b�), which specifies: if the polynomial �
 +

� + � has a double root in the curves, those curves are not 
used being vulnerable to the attacks as the double roots may 
lead to the destination point from multiple source points [1]. 

1.2 Problem Domain 

The scalar point multiplication is the main workload of ECC 
algorithms. Researchers have shown that scalar point multip-

lication accounts up to 80% of the total operations performed 
on Elliptic Curve Cryptosystems [2]. The inefficient implemen-
tation of scalar point multiplication hampers the performance 
thereby slowing down the resource constraint devices like 
smart phones, ATM machines and others.  

1.3 Objectives 

The primary objective of this research to study the different 
algorithms implemented being based on Elliptic Curves. The 
research modifies one of the existing algorithms such that the 
operation of scalar multiplication becomes efficient enabling 
faster ECC computation. The research carries out the compara-
tive analysis with other contemporary approaches in terms of 
types of operations and CPU cycles. Finally, the research cryp-
tanalyzes the Elliptic Curve Cryptosystems. 

 

Fig. 1. An Elliptic Curve 

1.4 Research Questions 

• Exploring the possibilities to figure out some sort of 
alternatives to improve Multi-Scalar Multiplication.  

• It is possible to eliminate the doubling operation? 

T
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• What is the necessary tradeoff to be made for replac-
ing doubling operation with only addition and sub-
traction? 

2    ECC ALGORITHMS 

We discuss three major implementations of Elliptic Curve 
Cryptographic algorithms namely: Elliptic Curve Diffie-
Hellman Key Exchange, Elliptic Curve Elgamal and Elliptic 
Curve Signature and Signature verification Algorithms.  

2.1 Elliptic Curve Diffie-Hellman Key Exchange 

Classical Diffie-Hellman Key Exchange Algorithm which 
forms the foundation of Elliptic Curve Diffie-Hellman Key 
Exchange Algorithm is used when Alice and Bob communicat-
ing in insecure channel agree to share the secrete key. With the 
establishment of Key Distribution Centers (KDC), the keys 
were delivered to the concerned communicating parties [3]. 
Although the fundamental principal remains same as that of 
classical Diffie-Hellman Key Exchange Algorithm, Elliptic 
Curve Diffie-Hellman Key Exchange gets the strength from 
the property of Elliptic Curves which is the operations to be 
performed are very easy to perform and extremely difficult to 
revert. This property of Elliptic Curve is extremely useful in 
cryptographic use [4].  

     The algorithm for Elliptic Curve Diffie-Hellman Key Ex-
change is given as: 

 

1. Alice and Bob publicly agree on an Elliptic Curve � 

over a large finite field * and a point + on that curve. 

2. Alice and Bob each chose privately large random in-

tegers, denoted by 
 and �.  

3. Using elliptic curve point-addition, Alice computes 
+ 

on � and sends it to Bob. Bob computes �+ on � and 

sends it to Alice. 

4. Both Alice and B can now compute the point 
�+: 

Alice by multiplying the received value of �+ by her 

secret number a & b and vice versa. 

5. Alice and Bob agree that the �-coordinate of this point 

will be their shared secret value. 

Algorithm 1: Elliptic Curve Diffie-Hellman Key Exchange 

2.2 Elliptic Elgamal 

Elgamal is one of the asymmetric algorithms consisting of 
three components, key generator, encryption algorithm and 
decryption algorithm. With the security equivalent to that of 
RSA, the security of Elgamal is also based on the discrete loga-
rithm problem which demands a discrete power to be ex-
ecuted to encrypt and decrypt the message [5]. 

A point - � � of large order and E are public information. 
The private key is an integer �� which is less than the order of  
- and the public key is �� = -��.                                                                        

Being based on these basic Elgamal encryption and decryp-
tion schemes ECC Elgmal algorithm has been devised. The 
Elliptic ElGamal cryptosystem is formed by changing the mul-
tiplicative structure of F ∗ p by the group law in an elliptic 
curve � over /0. 

Message expansion factor and the points on the curve � 
consisted in plaintext are two practical issues in implementa-
tion of Elliptic ElGamal for the lack of point generating me-
thods which are convenient and deterministic inherently in 
nature by themselves.   

 

Setup: Choose an Elliptic Curve � over *1along with the 
point + on the curve. 2 Cyclic subgroup - is generated 
with order 3. The private key for each user is an integer 
4 ∈ {0,1,2 … 3 − 1} and public key 4+ is formed. Let, 
: ∈ - is a message and Alice wants to send : to Bob. 

Encryption: Alice generates a random integer � ∈
{0,1,2 … 3} and computes �+. 

Alice looks up ;’s public key 4+ and computes : +
�(4+). 
Alice sends to ; the pair (�+, : + �4+).          
Decryption:   Bob Computes (: + �4+) − 4(�+) = : 
and recovers the    message.      

Algorithm 2: Elgmal Encryption & Decryption for ECC 

 

2.3 ECDSA 

Elliptic Curve Digital Signature Algorithm (ECDSA) allows us 
to verify the authenticity of its security without being com-
promised by creating the digital signatures that like the real 
world signatures.  

       

Signer 2 has domain parameters = = (>, /?, 
, �, -, 3, ℎ), 
private key A, and public key B = A-. ; ℎ
C authentic cop-
ies of = and B.  

To sign a message :, 2 does the following: 

1. Select a random integer � from [1, 3 − 1].  
2. Compute �- = (�1, �1) and � = �1 :�A 3. 

3. Compute F =  GH2 − 1(:).  
4 Compute C =  � − 1{F + A�} :�A 3. 
5. 2’s signature for the message : is (�, C). 

The computationally expensive operation is the scalar mul-
tiplication �I in step 2, for a point - which is known a pri-
ori. 

Algorithm 3: Elliptic Curve Digital Signature Signing 

                                                                                                                         

The presumption to use the real signatures is that we can 
figure out the signatory but we cannot modify the signature 
without the knowledge of the signatory [6]. Using ECDSA 
when we want to sign a file, we use a private key which is a 
random number generated applied on random point on curve 
known as point of origin.  

The signature is generated by applying the private key 
with the hash of the file where hash is a mathematical equa-
tion that is applied on every bite of data which generates a 
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number unique to the number such that the hash gets changed 
every time the data is changed ensuring that the signature is 
not valid anymore.  

The point of origin is a point on the Elliptic Curve which 
generates a second point on the curve as public key when mul-
tiplied with a randomly generated number. Elliptic Curve 
Cryptographic Digital Signature Algorithm (ECDSA) uses 
private key and the Cryptographic Hash Function (like SHA1) 
to sign the file [7].  

       

To verify 2’s signature (�, C) on :, ; does: 

1. Verify that � and C are integers in [1, 3 − 1] 
2. Compute F =  GH2 − 1(:). 
3. Compute J =  C − 1 :�A 3.  
4. Compute K1 =  FJ :�A3 
3A K2 =

 �J :�A 3. 

5. Compute K1- +  K2B =  (�1, �1).  
6. Compute v = x1 mod n.  

7. Accept  the signature if and only if L =  �. 

The computationally expensive operation is the scalar 
multiplications K1-  and K2B in step 5 where only - is 
known a priori 

Algorithm 4: Elliptic Curve Digital Signature Verification 

   Private Key is used to generate the digital signatures 
whereas public key is used to validate the signature thus gen-
erated. The cryptographic security of ECC depends upon Dis-
crete Logarithm Problem. It is necessary for a cryptanalyst to 
find the scalar which is the secret random number � from �+ 
and +.  

Till known computational complexity needed to 
code 150 bits key size Elliptic Curve Cryptosystem is given by 
Pollard’s ρ which is equal to 3.8 ×1010 MIPS-yr. (number of 
years required when executed with millions of instructions 
per second)[8-9]. 

3 DESIGN AND IMPLEMENTATION  

Modular reduction and scalar multiplication operations are 
the most heavily used operations in Elliptic Curve Cryptogra-
phy. Scalar multiplication is the most resource demanding 
operation in Elliptic Curve Cryptography and consumes up to 
85% of execution time. The operation of multiplying point P in 
scalar operation with itself is achieved through point addition 
and point doubling represented as: 

�+ = (+ + + + + + ⋯ . . ++)  − − − − −  � times 

       As a consequence the choice of algorithm determines the 
operational efficiency of �+ and efficiency of the whole cryp-
tographic procedure itself. Mathematically it is represented as: 

∑ �R
S
RT� +R                                          (4) 

where �R denotes scalar and +R  are the point on Elliptic Curve. 
It is mandatory for the operations to be efficient in the case of 
multi-scalar multiplications as they are the most time consum-

ing operations for Elliptic Curve Cryptosystems especially in 
the devices with constrain memory and computational power. 
Improvement in efficiency of multi-scalar multiplication is 
highlighted by the fact that overall efficiency of the system is 
dependent on the multiplication itself [10]. 

Slight modification to the SGRAC algorithm [11] provides 
us the capability to find the variance with the main theme and 
help us in our step of retreat by recording the differences 
while executing the algorithm. By modifying the algorithm we 
have not only simplified the scalar generating procedures but 
also reduced the number of bits to be stored.   

Three flags 0, 1 and 2 are set in list TrackItem for indicating 
presence, absence of abnormalities and readjustment of the 
values. Starting from the given prime number the values are 
reduced until a small threshold is reached.  

3.1 Devise of Algorithm 

The existence of non abnormality is indicated with 0 in list 
TrackItem. Whenever the difference between two successive 
terms is larger than the predefined Fibonacci ratio, the value is 
multiplied with the ratio itself which is indicated by the addi-
tion of value 1 into the list TrackItem and abnormality is cor-
rected by subtracting the recent list item from its penultimate 
predecessor and the corresponding adjustment is indicted by 
adding value 2 into the list TrackItem and the differences are 
stored in the list Store.  

 

1.. Read the first value of scalar as UVCWXWF:Y 

2.. Initialize the second and third values of series as  

UVCWXWF:�=UVCWXWF:Y ∗ (√[\�)
�

 & UVCWXWF:� =
UVCWXWF:Y − UVCWXWF:� 

3.. do until: UVCWXWF:R ≤ min _L
4 

      if  :V3_L
4 < 
�C( UVCWXWF:R − UVCWXWF:R\� ∗ a√[\�b

�
 )      

UVCWXWF:. 
00F3A(UVCWXWF:�R\� ∗ (√[\�)

�
 ) 

c�
��XWF:. 
00F3A (1) 

UVCWXWF:. 
00F3A(UVCWXWF:R\� − UVCWXWF:R) 

 c�
��XWF:. 
00F3A (2) 

 Store. append  (ListItemj − ListItemjk�) 

       else 

UVCWXWF:. 
00F3A(UVCWXWF:R\� − UVCWFXWF:R\�) 

     c�
��XWF:. 
00F3A (0)      

 4. Return two lists UVCWXWF: and c�
��XWF:             

  Algorithm 5: Variation Tracking Algorithm 

The difference between product of previous dataItem & 
Fibonacci ratio and current dataItem if exceeds the threshold 
value, the situation is termed as variation one and the values 
are readjusted. For the flag value 0, the next term is generated 
adding two immediate previous values. For flag value 1, Store 
valued is added with current ListItem and for the flag value 2, 
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the previous values are retreated one step and added up. 

1. A� K3WV4 ��3W <= V 

2.         Vl  (c���XWF:[�3W] == 0)     

   ?FLXW:. 
00F3A(?FLXW:[�3W − 1] 

                   +?FLXW:[�3W − 2] 

3.        Vl  (c���XWF:[�3W] == 1)     

       ?FLXW:. 
00F3A(?FLXW:[��K3W − 1] 

                   +GW��F[CW��3W]) 

                 CW���K3W = CW�F�3W + 1 

4.       Vl  (c���XW:[�3W] == 2)     

                  ?FLXW:. 
00F3A(?FLXW:[�3W − 2] 

                   +?FLXW:[�3W − 3] 

  Return ?FLXW:             

   Algorithm 6: Scalar Generation 

 

3.2 Results 

The number of bit to be recorded for the increment in bit 
size of the scalar rises linearly thereby supporting the idea of 
maximum efficient utilization of storage.  

Table 1: Timing Performance and bits to be stored 

Bits 
Time(ms) 

Record 
(Bits) 

Worst Average Best 

64 6.28 5.32 3.72 48 

96 9.5 8.47 6.96 48 

128 8.67 8.51 8.48 56 

160 12.25 9.93 6.67 56 

192 20.03 12.29 8.94 64 

224 14.23 12.3 11.03 72 

256 18.05 14.08 12.48 72 

288 19.12 16.04 14.72 80 

320 26.01 25.31 18.89 88 

352 29.54 25.72 19.11 96 

384 32.37 26.85 23.72 96 

416 35.96 29.74 25.9 104 

448 46.71 36.65 28.06 104 

480 51.63 41.09 32.57 120 

512 59.04 48.37 36.88 128 

As shown in the Table 1, starting from 64 bits upto 512 
bits, the time for finding the value of scalar � are recorded 
along with the bits required for the storage.   

Once, the first two precomputed values are figured out, the 
rest of the values obtained from Variation Tracking Algorithm 
can be discarded and only the values of the list TrackItem are 
to be preserved. The desired prime number is obtained with 
repeated addition and adjustment which completely elimi-
nates the doubling operation. 

Table 2: Number of Addition Operations along with series 
length 

Bits 
Operation Stages 

Sequence 
Length 

worst Average Best Average 

64 71 69 68 37 

96 115 112 109 52 

128 161 160 156 81 

160 254 247 239 114 

192 351 341 330 157 

224 438 435 429 205 

256 532 530 517 248 

288 633 628 605 301 

320 726 706 697 343 

352 806 793 781 392 

384 895 884 869 409 

416 974 961 947 436 

448 1090 1067 1045 498 

480 1193 1172 1156 531 

512 1308 1279 1267 589 

 

Moreover, the largest variation in terms of percentage is 
within three for the worst case when compared with average 
ensuring the efficient utilization of both time and memory 
resources. 

Table 3 shows the comparison of the computation in terms 
of recorded time and number of operations involved with re-
sult of other algorithms studied earlier in the Section 2. 

4 ANALYSIS 

The comparative analysis is obtained using the system envi-
ronment as: Processor: Intel Core i5 CPU M 460 @ 2.53 GHz 
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with 2 GB RAM, System: 32-bit Operating System, x64-based 
processor and Tool: Sage-5.11 installed with Oracle VM Vir-
tualBox Manager using Operating System Fedora. 

 
4.1 Comparative Analysis 

The methods were selected as the cost-consuming operation of 
scalar multiplication and inverse were substituted with addi-
tion, subtraction and double operation in all the cases.  

The results obtained are compared against Extended Euc-
lidean Algorithm which is based on Modular Reduction and 
Squaring, Generalized Continued Fraction based on Window 
Method, Shamir’s Trick which performs addition and multip-
lication in blocks and Interleave method which works in bit 
level manipulation of binary numbers. The parameters can be 
referenced with values from Table 4.  

Table 3:  Comparison of Results 

Methods Operation No of Operations 

EEA 
Modular Reduction 
and Squaring 

80Add +260DBL 

GCF Window Method 232ADD 

Shamir' 
Trick 

Multiple Blocks in 
Operation 

121ECADD 
+160ECDBL 

Interleave 
Method 

Bits manipulation  
160 ECADD + 160 
ECDBL 

Our 
Scheme 

Addition-Retreat-
Addition 

247ADD +3SUB 

 

Table 4: Comparison of different operations of ECC [12] 

Operations CPU Cycles Time Taken 

Addition in GF(p) 315 1.97µs 

Subtraction in in GF(p) 357 2.23 µs 

Montgomery Multipli-
cation 

2860 17.88 µs 

Point Addition 33049 207 µs 

Point Doubling 40737 254 µs 

Scalar Multiplication 10,148,863 63.4 ms 

The results are compared with Extended Euclidian Algo-
rithm which employs Modular Reduction and Squaring Me-
thod, Generalized Continued Fraction which employs Win-
dow Method, Shamir’s Trick which finds results of operation 
of simultaneous Addition and Multiplication in blocks and 
Interleave Method which adjusts the Multiplication. Table 3 
shows the results obtained are efficient in terms of time and 
CPU cycle when referenced with results from Table 4. It is 
evident that the costly operations of repeated multiplication 
and doubling have been completely replaced.  

Table 3 shows the comparison of the computation in terms 
of recorded time and number of operations involved with re-
sult of other algorithms studied in literature review. Perfor-
mance of the scheme is compared with other methods under 
consideration and is depicted in Fig. 3 where the performance 
of the scheme consists of 247 Add operations and 3 Subtract 

operations.   

 

Fig. 2. Number of stages in operations and Sequence Length 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Comparison of Performance 

It is evident that Subtraction operation is mere sign inver-
sion of Addition Operation. Fig. 3 clearly shows that the cum-
bersome operation of ECCDBL has been completely eliminat-
ed in new scheme.  

Table 4 provides the costs in terms of CPU cycles and time 
taken for the completion associated with different operations 
used in ECC. 

 
4.2 Cryptanalysis 

As the cryptosystems based on Elliptic Curve Cryptography 
are robust, attempts have been made to figure out the secret 
key from the leaked information like the analysis different 
amount of electromagnetic emanations, error message, noise 
and even recording of CPU cycles. This analysis is called in-
formation leakage analysis and falls under the category of side 
channel analysis [13].  

According to Roberts & Zobehi [14-15] there are both ac-
tive and passive ways to attack a cryptographic system. In 
passive attack, the attacks records and studies the information 
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like timing leakages, power consumption leakages and error 
messages as the attack have no direct access to the devices. 
Hamming weight leakage and transition count leakage revel 
the information easily as they are associated with binaries [16].  

Clever outsiders, funded organizations and knowledgea-
ble insiders are some of the active attackers who might have 
sophisticated tools to carry out the analysis. The best way to 
protect from these types of attacks is inserting several dummy 
activities such that when the leaked information is analyzed 
no useful information is revealed [17]. 

Moreover, in Elliptic Curve Cryptography overwhelming-
ly depends upon the private key � which is a random number 
and some of the adversaries even figure out the pair (�, ?) 
without even solving the =U+. As shown in [18-19], many 
applications like low power devices and high volume serves 
precompute the pair (�, ?) for late use to enhance their per-
formance.  

The pairs are generally stored on disks making them ex-
tremely vulnerable. Storing in hardware protected media is 
one of the best ways to protect the forging. The pairs are not 
only vulnerable for the current use of the private key but also 
for the long run as the future keys are derived from the cur-
rent pair as most predominant ways to generate large future 
key pairs are dependent on the current pair. 

4 CONCLUSION 

4.1 Findings  

For the testing purpose, 100 random numbers for each of the 
corresponding bits were generated and tested. Simple analysis 
shows that the number of operations required during the ex-
ecution have a linear correlation with number of bits em-
ployed. The average maximum variation between the worst 
case and average case is less than 4%.  

Table 4 show the comparison of the computation in 
terms of recorded time and number of operations involved 
with result of other algorithms studied in literature review. 
The methods were selected as the cost-consuming operation of 
scalar multiplication and inverse were substituted with addi-
tion, subtraction and double operation in all the cases. The 
findings can be summarized as: 

• It is possible to improve the efficiency of scalar mul-
tiplication in Elliptic Curve Cryptography  

• Fibonacci pattern is the key for the implementation of 
Addition-Retreat-Addition scheme. 

• The values obtained show that the number of bits to 
be stored and the operation time increases linearly for 
the increased bits to be manipulated. 

• It is possible to eliminate the costly operation of 
doubling in ECC. 

4.2 Contributions 

The contributions of this research paper are as follows: 

• Analysis of Algorithmic approach to Elliptic Curve 
Cryptography 

• Modification of an existing algorithm such that it be-
comes suitable for efficient implementation of scalar 
multiplication in Elliptic Curve Cryptosystems. 

• Comparative analysis and results. 

4.3 Limitations 

There are few limitations associated with this research work 
which are: 

• The research work has been primarily being focused 
only into the field of Elliptic Curve Cryptographic 
schemes. 

•  Only the software implementation has been carried 
out in this research work and no hardware considera-
tions were made. 

• Low computational processing devices like 8-bit, 16-
bit processors were not considered.  
 

4.4 Recommendations for Future Work 

Following could be the recommendations for researchers to 
explore in future: 

• The researchers are recommended to extend the 
scheme discussed in pairing based cryptography and 
examine if comparable results can be obtained. 

• Implementation of the discussed scheme in the hard-
ware devices. 
 

This research explored and examined various algorithms 
associated with Elliptic Curve Cryptography. It is figured out 
that the scalar multiplication operation is the most cost incur-
ring operation in terms of resources in Elliptic Curve Crypto-
graphy. A scheme is developed, discussed and implemented 
to make the scalar multiplication in finite field efficient and 
comparable results have been presented.  
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